Multi-environment robotic transitions through adaptive conformation

  • Mickey, T.; et al. Learn the powerful perceptive motion of quadrobots in the wild. Sciences. Robot. 7eabk2822 (2022).

    PubMed

    Google Scholar

  • Sinatra, NR et al. Ultra-fast handling of microstructures using a soft mechanical clutch. Sciences. Robot. 4eaax5425 (2019).

    PubMed

    Google Scholar

  • D’Andrea, R. Guest Editorial: A Warehouse Revolution: A Retrospective Look at Kiva Systems and the Grand Challenges Ahead. IEEE Trans. to me. Sciences. M. 9638–639 (2012).

    Google Scholar

  • Forlizzi, J. & DiSalvo, C. Service robots in the home environment: a study of the Roomba broom in the home. in HRI ’06: Proc. 1st ACM SIGCHI/SIGART Conference on Human-Robot Interaction 258–265 (ACM, 2006).

  • See. et al. Shape-shifting robots: bioinspiration, simulation, and physical perception. case. mater. 332002882 (2021).

    CAS

    Google Scholar

  • Nygaard, T. F., Martin, C. P., Torresen, J., Glette, K. & Howard, D. Embodying real-world artificial intelligence through an morphologically adaptive four-legged robot. nat. Mach. Intel. 3410-419 (2021).

  • Ijspeert, A. J., Crespi, A., Ryczko, D. & Cabelguen, J.-M. From swimming to walking with a robot salamander driven by a model of the spinal cord. Sciences 3151416-1420 (2007).

    advertisements
    CAS
    PubMed

    Google Scholar

  • Fish, FE Advantages of aquatic animals as models for bio-inspired drones compared to current AUV technology. Bioinspire. Biomim. 15th025001 (2019).

  • Yu, J. et al. On a bio-inspired amphibious robot capable of multimodal locomotion. IEEE / ASME Trans. Mechatron. 17847-856 (2012).

    Google Scholar

  • Yu, J., Ding, R., Yang, Q., Tan, M. & Zhang, J. J. Android domain. 30702-716 (2013).

    Google Scholar

  • Boxerbaum, AS et al. Design, simulate, manufacture and test a bio-inspired amphibious robot with multiple modes of locomotion. J. Robot. mechatronics 24629-641 (2012).

    Google Scholar

  • Lock, R. J., Burgess, SC, Vaidyanathan, R. Multimodal Motion: From Animal to Application. Bioinspire. Biomim. 9011001 (2013).

    advertisements
    PubMed

    Google Scholar

  • Baines, R.; , Fish, F & Kramer-Bottiglio, R Bio-inspired sensing, operation and control in underwater soft robotic systems (Eds. Paley, DA & Wereley, NM) 2 (Springer Nature, 2021).

  • Dudek, C et al. Aqua: An autonomous amphibious robot. the computer 4046-53 (2007).

    Google Scholar

  • Ijspeert, AJ’s Amphibious and Sprawling Movement: From Biology to Robotics and Back. Annu. Rev robot control. Autun. the system. 3091919–095731 (2020).

    Google Scholar

  • Niakatora, JA et al. Reverse-engineered stem amnion motility. temper nature 565351–355 (2019).

    advertisements
    CAS
    PubMed

    Google Scholar

  • Mazouchova, N., Umbanhowar, P.B. & Goldman, D.I. Flipper-driven ground motion of a sea turtle-inspired robot. Bioinspire. Biomim. 8026007 (2013).

    advertisements
    PubMed

    Google Scholar

  • Crespi, A., Karakasiliotis, K., Guignard, A. & Ijspeert, A. J. Salamandra Robotica II: an amphibious robot for studying the salamander-like swimming and walking gait. IEEE Trans. Robot. 29308-320 (2013).

    Google Scholar

  • Ijspeert, A.J. Biorobotics: Using robotics to simulate and investigate agile motion. Sciences 346196-203 (2014).

    advertisements
    CAS
    PubMed

    Google Scholar

  • Wyneken, J. in sea ​​turtle biology vol. 1 (Eds. Lutz, PL & Musick, JA) ch. 7 (CRC, 1997).

  • Zani, PA, Gottschall, JS & Kram, R. Giant Galapagos turtles walk without an inverted pendulum to exchange mechanical energy. J. exp. Biol. 2081489–1494 (2005).

    PubMed

    Google Scholar

  • Baines, R., Freeman, S., Fish, F. & Kramer-Bottiglio, R. Variable limb stiffness morphing for legged amphibious robots inspired by clonian environmental adaptations. Bioinspire. Biomim. 15th025002 (2020).

    advertisements
    PubMed

    Google Scholar

  • Blob, R., Mayerl, C., Rivera, A., Rivera, G. & Young, V. integration. Biol companies. 561310-1322 (2016).

    PubMed
    PubMed Central

    Google Scholar

  • Rivera, ARV, Wyneken, J. & Blob, R. W. Forelimb Kinetics and kinematic patterns of loggerhead sea turtles (Carita CaritaAre kinetic patterns conserved in the evolution of new kinetic strategies? J. exp. Biol. 2143314-3323 (2011).

    PubMed

    Google Scholar

  • Li, C., Umbanhowar, P.B., Komsuoglu, H., Koditschek, D.E. & Goldman, D.I. Sensitive dependence of the motion of a legged robot on granular media. Brooke. Acad Natel. Sciences. United States of America 1063029-3034 (2009).

    advertisements
    CAS
    PubMed
    PubMed Central

    Google Scholar

  • Mazouchova, N., Gravish, N., Savu, A. & Goldman, D.I. Use of granulomatous sclerosis during the ground motion of hatching sea turtles. Biol. Lett. 6398-401 (2010).

    PubMed
    PubMed Central

    Google Scholar

  • Richefeu, V., El Youssoufi, MS & Radjai, F. Shear resistance properties of wet granular materials. Phys. Reverend E 73051304 (2006).

    advertisements

    Google Scholar

  • Simoni, A. & Houlsby, G.T. Direct shear strength and expansion of sand and gravel mixtures. Geotech. Jeol. M. 24523-549 (2006).

    Google Scholar

  • Kuo, AD Choose your steps carefully. IEEE robot. Automatic mag. 1418-29 (2007).

    MathSciNet

    Google Scholar

  • White, CH, Lauder, GV & Bart-Smith, H. Tunabot Flex: A tuna-inspired robot with body flexibility improves high-performance swimming. Bioinspire. Biomim. 16026019 (2021).

    Google Scholar

  • Mahadevan, L. Morphology: engineering, physics, and biology (Mohet Institute for Theoretical Physics, 2021).

  • Ultee, E., Ramijan, K., Dame, R. T., Briegel, A. & Claessen, D. Stress-induced adaptive morphology in bacteria. case. microbe. Physiol. 7497–141 (2019).

  • Justice, S. S., Hunstad, D. A., Cegelski, L. & Hultgren, S. J. Morphological plasticity as a bacterial survival strategy. nat. Rev. Microbiol. 6162–168 (2008).

    CAS
    PubMed

    Google Scholar

  • Kim, C et al. Soft, reconfigurable body tracks using a unidirectional stretchable composite plate. nat. common. 103464 (2019).

    advertisements
    PubMed
    PubMed Central

    Google Scholar

  • Kinoshita, C., Fukuoka, T., Narazaki, T., Niizuma, Y. & Sato, K. Analysis of why sea turtles swim slowly: a metabolic and mechanistic approach. J. exp. Biol. 224jeb236216 (2021).

    PubMed

    Google Scholar

  • Butler, P., Milsom, W. & Woakes, A. Respiratory, cardiovascular, and metabolic alterations during steady state swimming in the green turtle, Chelonia Midas. J. Comp. Physiol. B 154167–174 (1984).

    Google Scholar

  • Baudinette, R. V., Miller, A. M. & Sarre, MP. Water and terrestrial kinetic energy in the frog and tortoise: a search for generalizations among ectotherms. Physiol. Biochem. Zol. 73672-682 (2000).

    CAS
    PubMed

    Google Scholar

  • Madden, J.D. Mobile robots: kinetic challenges and materials solutions. Sciences 3181094-1097 (2007).

    advertisements
    CAS
    PubMed

    Google Scholar

  • Davenport, J. Locomotion in leatherback turtle hatchlings Dermochelys coriacea. J. Zool. 21285-101 (1987).

    Google Scholar

  • Eckert, SA Swimming speed and leatherback turtle patterns. J. exp. Biol. 2053689–3697 (2002).

  • Tucker, VA Cost of locomotion in animals. Biochem companies. Physiol. 34841–846 (1970).

    CAS
    PubMed

    Google Scholar

  • Long, J. H., Schumacher, J., Livingston, N. & Kemp, M. Four fins or two? Quad swimming with a water robot. Bioinspire. Biomim. 120-29 (2006).

    advertisements
    PubMed

    Google Scholar

  • Chen, Y., Doshi, N., Goldberg, B., Wang, H. & Wood, R. J. Water surface controllable to underwater transition by electrohydration in a land-water hybrid robot. nat. common. 92495 (2018).

    advertisements
    PubMed
    PubMed Central

    Google Scholar

  • Wang Jie et al. Undersea crab-like gait of a shallow crab-like robot propelled by paddle legs. mechatronics 481-11 (2017).

    Google Scholar

  • Sellers, WI, Rose, KA, Crossley, DA & Codd, JR Infer transport cost from whole-body kinematics in three species of sympatric turtles with different locomotion habits. Biochem companies. Physiol. a 247110739 (2020).

    CAS

    Google Scholar

  • Milana, E. et al. EELWORM: A flexible, bio-inspired multimedia amphibious robot. in 2020 3rd IEEE International Conference on Soft Robotics (RoboSoft) 766-771 (IEEE, 2020).

  • Kitano, S., Hirose, S., Horigome, A. & Endo, G. TITAN-XIII: A sprawling-type quadrupedal robot with rapid, energy-saving walking capability. Robomich c. 38 (2016).

    Google Scholar

  • Kandhari, A., Wang, Y., Chiel, H. J., Quinn, R. D. & Daltorio, K. A. Peristaltic motion analysis to maximize speed or reduce cost of moving earthworm-like robots. Soft robot. 8485–505 (2021).

    PubMed

    Google Scholar

  • Kau, N., Schultz, A., Ferrante, N. & Slade, P. Stanford Doggo: an open source, semi-directional, four-wheel drive. in 2019 International Conference on Robotics and Automation (ICRA) 6309–6315 (IEEE, 2019).

  • Berlinger, F., Saadat, M., Haj-Hariri, H., Lauder, G. V. & Nagpal, R. R. Three-dimensional fish-like swimming with an autonomous multi-fin robot and biomimetic. Bioinspire. Biomim. 16026018 (2021).

    Google Scholar

  • Kim, K.; , Spiller, B, Lobo, E-S. Ramzani, A. & Chong, S.; A bipedal robot that can fly, tightrope and skateboard. Sciences. Robot. 6eabf8136 (2021).

    PubMed

    Google Scholar

  • Bledt, J et al. MIT Cheetah 3: The design and control of a robust, dynamic four-action robot. in 2018 IEEE/RSJ International Conference on Robotics and Intelligent Systems (IROS) 2245-2252 (IEEE, 2018).

  • Hutter, M et al. ANYmal – a highly mobile and dynamic four-legged robot. in 2016 IEEE/RSJ International Conference on Robotics and Intelligent Systems (IROS) 38-44 (IEEE, 2016).

  • Craig, J Introduction to Robotics: Mechanics and Control (Addison-Wesley, 1986).

  • #Multienvironment #robotic #transitions #adaptive #conformation

    Leave a Comment

    Your email address will not be published. Required fields are marked *